
Particle-based SLAM for Autonomous 
Vehicles 

A parallel particle-based SLAM implementation for the 15-418 
Parallelism Competition (Spring 2017) 

Nishad Gothoskar and Cyrus Tabrizi 
 
SUMMARY: 
 
We worked towards an implementation of Simultaneous Localization and Mapping 
(SLAM) that used GPU-accelerated with CUDA to make possible the use of large 
particle filters and full LIDAR 3D point clouds.  
 
BACKGROUND: 
 
Our project takes 3D point cloud data, 3D velocity measurements, and 3D gyro 
measurements (roll, pitch, yaw) from the ​KITTI Vision Benchmark Suite​ and uses SLAM 
to generate more accurate vehicle trajectories and better-aligned point cloud maps. 

 
Figure 1: External system overview of our project 

 
Running this algorithm across multiple frames of sensor data yields a full map of the 
environment you have moved through and the associated positions the vehicle was in 
with respect to that map. 

http://www.cvlibs.net/datasets/kitti/


 
The key operations are described in the figure below. 

 
Figure 2: Internal system overview of our project 

 
There is additional parallelism to exploit within some of these steps (for example, each 
particle’s pose consists of 6 dimensions so there’s some parallelism to exploit in the 
matrix updates and matrix arithmetic) but the most important parallelism to exploit is that 
across particles and that across LIDAR points (because of their large sizes). 
 
The most computationally expensive step is #4 as the work involves comparing two sets 
of 100,000 3D points for each and every particle (one set is the new data transformed 
by that specific particle’s pose and the other is the existing map). 
 
The dependencies hidden in the chart above are as follows: 
 

● Steps 1, 2, 3 and 4 are independent across particles and LIDAR points, but must 
happen sequentially with respect to each other. That is, any given combination of 
particles and LIDAR points can be streamed through steps 1, 2, 3 and 4 
independently of any other combination of particles and LIDAR points going 
through these steps. 

● There is a barrier between steps 4 and 5. That is, all the particles and all the 
LIDAR points must be processed in step 4 before we can evaluate which particle 
has the best score in step 5. 



 
While there are lots of opportunities for parallelism (especially with the two-way 
independence of LIDAR points and particles), different implementations with face 
memory constraints. For example, if we implemented this pipeline with a barrier 
between step 3 and 4, we’d need to have storage for (N lidar points per scan) x (M 
many particles) and either allocate space on the GPU so that this step is fused with later 
ones or efficiently manage the transfer of memory back and forth from GPU and CPU 
space. Some of these considerations can be solved through our choice of algorithm and 
others are dealt with at the implementation level. For example, one algorithm for 
evaluating map-to-map similarity would involve operating over two maps, both of which 
have already been transformed into the global reference frame and stored into memory. 
Another approach would only require new memory for transforming one map, but then 
transforming that map to be in the reference frame of the second map, then doing the 
same comparison work as before. A third approach would keep both maps in memory in 
their respective reference frames and then fuse the transformation process into the 
comparison itself (i.e. compare this grid cell to another grid cell and compute the 
location of that grid cell through a transformation we do “live” for each grid cell, instead 
of transforming the points beforehand and comparing grid cells from the same location 
in both maps). 
 
Of related importance is the locality present in the LIDAR scans before performing this 
transformation. In one approach, there’s spatial locality in processing an entire scan for 
one particle, since the points are stored as a single array in memory. In a different 
approach, there is temporal locality if a single point from the scan is operated on by all 
of the particles at the same time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



------------------------------------------------------------------------------------------------------------------- 
 
The basic structure of our algorithm involves maintaining a set of particles that help us 
correct for error in IMU data (velocities and angle measurements).  There are roughly 
1000 particles (we can control the size of this “particle filter”). Each of these particles 
represents a possible pose the vehicle could be in.  
 

 
 

 
 

Figure 3: Screenshots from our 1D simulation of particle-based SLAM algorithm  
 
To help us understand and learn how this algorithm worked, we implemented a 1D 
simulation in Python which let us to explore the behavior of these particle filters. 
 
Initially, all of the particles are reset to the origin (in 3D, this means X = 0, Y = 0, Z = 0, 
Rx = 0, Ry = 0, Rz = 0, but in 1D, this would just be X = 0). Our map will be built relative 
to the origin and could be adjusted to a different reference frame later. As LIDAR data is 
received, it will have to be remapped from the local reference frame of the vehicle at 
that time back into this global reference frame. On the first time step, this means the 
only error in the map will be from the LIDAR data itself, not the IMU. SLAM will help us 
compensate for the IMU error that shows up later, but we’ll always be limited to the 
precision and accuracy of our LIDAR data. 
 
For each timestep, the particles are offset by the velocity and rotation observed by the 
IMU. Error offsets for Vx, Vy, Vz, Rx, Ry, Rz are then sampled from normal distributions 
and added to each of the particles. If the actual sensor error distributions were known, 
these would be sampled instead. Normal distributions are used as an approximation of 
the real error distributions. These new particles poses are then used to offset every 
point in the LIDAR scan back into the original reference frame. For each of these 



particles, a score is computed reflecting how well the LIDAR scan matches the previous 
map. 
 
The particle with the best score is picked and the map that was transformed by its pose 
is merged with the preexisting map. Using the map similarity scores for each particle, 
the particles are resampled. The idea here is that the next set of particles will reflect the 
best of the previous set of particles, as determined in the map comparison stage. 
 
This process repeats for each time step. 
 
APPROACH: 
 
Our final implementation used CUDA on an NVIDIA Tesla K40 GPU from the Latedays 
cluster. The Latedays cluster also features several Intel Xeon E5-2620 CPU’s, which we 
only executed on with a single thread. 
 
Each step involved a different mapping to the target machine.  In the first step where we 
compute transforms for each particle, the mapping is from particles to threads.  In the 
next steps, which involve applying this transform, we parallelize over the LIDAR point 
cloud instead. 
 
For both the map composition and map comparison stages, we explored several data 
structures for representing the map before reaching our current approach.  
 
Our initial approach was to just keep all the points but this approach does not scale for 
map composition as it involves keeping (T timesteps) * (N many points kept from each 
LIDAR scan) points in memory. Importantly, the high frequency of our sensor data (we 
had access to 10 Hz sensor data), meant that the changes from frame to frame were 
relatively little. While this overlap is both important for building confidence in and 
precision for features that are present in both and important for picking out moving 
objects, representing this by keeping all of the original points is very redundant.  
 
Our next choice was to use some type of tree structure to reduce the redundancy in the 
image by mapping different parts of the tree to spatial regions in the map. This makes it 
easier for us to prevent the addition of points that are close together.  This 
implementation would have been similar to a Kd or BVH tree.  However for us to take 
advantage of this for our project, the tree data structure would have had to support 
parallel lookup, parallel removal and parallel inserts. Implementing this was infeasible 



given the timeline of our project, but it would have brought significant performance 
improvements.  
 
Our final choice was to aggregate points into a grid where each cell tracked how many 
points were mapped to that location in space. Thresholding on this “density map” 
allowed us to preserve important clusters and also prevent the addition of redundant 
data. The main problem with using a grid cell is that it fails to preserve the precision of 
the LIDAR data. This is mostly a problem for map comparisons where we’re trying to 
distinguish between very small transformation differences across particles. If we lose all 
the LIDAR precision due to voxelization or gridding (we mapped vertical columns of 
points into 2D), this will make comparisons ineffective. Gridding is also bad for LIDAR 
because the point clouds are very sparse. However, it is a more manageable approach 
to implement and relatively inexpensive from a compute standpoint. 
 
We wrote our entire procedure from scratch, including all the math needed to implement 
SLAM correctly. This presented us with many issues during implementation that would 
have been avoided had we used outside libraries. 
 
RESULTS: 
 
The goal of our project was take the best of what we learned from 15-418 and use it to 
improve performance in particle-based SLAM for LIDAR. To evaluate our work, our goal 
was to analyze the performance of the individual components in our pipeline and also 
the output quality of the pipeline overall. 
 
The experimental setup for evaluating our code was to vary the size of the workload as 
well as the kernel configuration (number of blocks). The first test we ran analyzed the 
performance of the particle update stage as we vary the number of particles. The 
reason this number is important is that a large particle filter allows the SLAM algorithm 
to consider more possible vehicle states, improving the estimate of the true pose. The 
next test we ran was to analyze the speedup of our LIDAR data transformations as we 
varied how many points we were modifying. This is an important number as map 
composition and map comparisons theoretically improve as the amount of data 
increases. This makes understanding the performance tradeoff of enabling that extra 
data processing an important step. 
 
 
 



 
 
Figure 4: Analysis of the particle filter update step reveals the GPU’s capacity. Note, this 

test was done on an NVIDIA Tesla K40m GPU. 
 

 
Figure 5: Comparison of our LIDAR transformations as the scan size is increased and 

across single-threaded sequential and parallel implementations 
 



Figure 4 shows the rate at which the GPU is handling the particle-filter update step as 
we change the number of particles we are considering. The first result is that there is 
very little effect of block size on the rate of processing. Another result is that once we hit 
around 1,000,000 particles, we appear to hit an upper bound on the processing rate. 
This tells us that we are not making full use of resources until we push to 1,000,000 but 
this does not necessarily mean that we should scale to this number of particles because 
then we are increasing our latency. It also doesn’t reveal whether our parallel 
implementation itself is performant. The tradeoff to consider here is latency vs. resource 
utilization vs. accuracy (dependent on number of particles). This graph was useful in our 
decisions about particle-filter size. 
 
Figure 5 compares the runtime of a sequential CPU algorithm to apply transformations 
to a LIDAR scan to the runtime of our parallelized version in CUDA.  Note the log scale 
on the “Number of Points” axis.  A sequential version cannot scale well as it grows to be 
over 4x slower than our parallelized version at 10,000,000 points 
 
Testing these properties of our algorithm with respect to workload size was important 
because it helped us understand the size of a map that would be viable to process and 
update efficiently.  The problem size is particularly important because our size is 
changing as the algorithm continues to run since a larger map is being built. 
 
We definitely made a sound choice of machine target because we wanted to be realistic 
in what an autonomous vehicle would be able to take advantage of.  We didn’t want to 
use  many nodes because it is not realistic for a vehicle to have that. Given that we 
have a compute intensive and data-parallel algorithm, we believe we are positioned to 
make good use of a GPU. 
 
CONCLUSION: 
 

In the end, our work is actually incomplete. We were able to analyze and verify 
correctness of multiple stages in our particle-based SLAM pipeline, but our ability to 
apply 15-418 knowledge to our SLAM pipeline and actually demonstrate working SLAM 
was limited by our failure to properly scope the project, our decision to process the 
KITTI dataset and develop our SLAM implementation entirely from scratch, and the 
large amount of setup required to integrate the pipeline tightly. We think there is still lots 
of room for performance optimization and analysis in the space of SLAM and LIDAR 
data processing. 
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